Study 8J05 Main


Notrump or Suit Fit?


 by Richard Pavlicek

A common decision is whether to place the contract in notrump or a suit fit. Most often this is a choice between 3 NT and four of a major, but the decision can apply to any suit fit at any level. This study considers the problem from the perspective of hand patterns. Other factors certainly apply, such as the ability to obtain a useful ruff, and the presence or lack of stoppers, but for now assume these to be equal or indeterminable. Which partnership patterns are better for notrump? Which for suit play? And by what percent do they differ?

3 NT or 4 of Major1 NT or 2 of Suit2 NT or 3 of Suit6 NT or 6 of Suit

Results were obtained from a database of 10,485,760 solved deals. Only partnerships with an 8 or 9-card fit, no suit over six cards, and no singleton or void were considered, as the lack of a fit clearly favors notrump, and a 7+ card suit or splinter clearly favors suit play. To obtain maximal data, both sides (N-S and E-W) of each deal were analyzed, and the fit could be anywhere (suit identity is irrelevant). Makable tricks are determined at double-dummy, and each contract is right-sided if it matters which hand is declarer.

To facilitate interpretation, all results are transposed to West and East with the fit in spades and West having the greater spade length (or greater freakness if a 4-4 fit). Listing is in order of frequency of the paired hand patterns (irrespective of makes) in the database, which is likely to be the theoretical frequency as well. West patterns are shown in generic order: fit suit (spades), longest other suit, next longest, shortest. East patterns are matched suit-by-suit to West.

Study 8J05 MainTop Notrump or Suit Fit?

Three Notrump or Four of Major

If game but not slam is makable in notrump or spades, this table shows the percent of the time that only 3 NT makes, only 4 S makes, and both games make for each pair of hand patterns; i.e., percents in each row must total 100. Times shows the number of occasions the paired hand patterns qualified for this table. Tinted rows show cases where 3 NT makes more often than 4 S.

The data strongly supports the accepted practice of not using Stayman with 4-3-3-3 shape, as 3 NT is superior regardless of opener’s shape (if balanced). Note Cases 1, 3, 6, 7 and 56. Even in Case 12 with a nine-card spade fit, notrump is the big winner.

A similar diagnosis occurs after a Jacoby transfer and a follow-up in notrump, giving opener a choice of contracts. Traditional strategy is to choose 3 NT with a doubleton, or the major with 3+ trumps. Not the best advice! Cases 3, 6, 7 and 12 show that with 4-3-3-3 shape opener should generally choose notrump, even with a four-card major fit. A caveat is that transfer bidder will not always be 5-3-3-2, but note that Cases 8 and 9 (5-4-2-2) only slightly favor suit play.

If neither hand is 4-3-3-3, or if either hand is unbalanced (5-4-2-2 or 6-3-2-2), the major-suit game is superior except curiously in Cases 29 and 45. Note how the major-suit advantage soars when the two hands have matching doubletons (Cases 14, 26, 32, …).

CaseWestEast3 NT only4 S onlyBoth makeTimes
14=4=3=24=3=3=323.3316.9459.7384,642
24=4=3=24=2=3=416.0518.3665.5840,966
35=3=3=23=3=3=435.933.5160.5745,324
44=4=3=24=2=4=314.7125.6759.6237,033
54=4=3=24=3=2=414.8726.1458.9836,685
65=3=3=23=4=3=326.4313.8659.7138,911
75=3=3=23=3=4=326.9814.2458.7838,545
85=4=2=23=3=3=418.4119.5162.0831,322
95=4=2=23=3=4=318.6019.8161.5931,126
105=3=3=23=2=4=418.4620.0461.5031,024
115=3=3=23=4=2=418.9420.1060.9630,971
125=3=3=24=3=3=328.809.6661.5428,725
135=4=2=23=2=4=415.3916.3768.2328,465
144=4=3=24=3=4=211.1244.9143.9821,129
155=3=3=24=2=3=49.4526.5564.0024,909
164=5=2=24=2=3=49.1739.2351.6024,662
175=3=3=24=3=2=49.3826.1864.4424,700
184=5=2=24=2=4=39.3938.9551.6624,516
195=3=3=23=2=3=518.5120.8260.6724,082
205=3=3=23=3=2=518.6520.5760.7823,908
215=3=3=24=4=2=39.0635.8155.1321,897
225=3=3=24=2=4=38.9335.9455.1321,594
235=4=2=24=3=3=39.2632.9557.7921,585
245=4=2=24=2=3=44.3641.3854.2621,674
255=4=2=24=2=4=34.4941.1454.3721,800
265=3=3=23=4=4=210.6448.8640.5120,747
275=4=2=23=2=5=312.2528.4159.3419,802
285=4=2=23=2=3=512.7428.5358.7319,602
296=3=2=22=3=4=422.4712.7564.7819,169
306=3=2=23=3=3=416.7319.8263.4518,309
316=3=2=23=3=4=317.0320.2862.6918,393
325=3=3=24=3=4=28.8147.2443.9515,918
335=3=3=24=4=3=28.9847.8943.1315,613
346=3=2=22=4=4=317.3323.9658.7116,846
356=3=2=22=4=3=417.3024.0758.6316,692
365=3=3=24=2=2=53.3950.7945.8214,709
376=3=2=23=4=3=313.4930.4056.1115,667
385=4=2=24=3=2=43.3856.4940.1313,663
395=4=2=24=3=4=23.3657.8138.8313,587
404=4=3=24=4=2=38.2036.5755.2213,458
415=4=2=23=3=5=26.8757.2035.9313,041
426=3=2=23=2=4=47.2328.7963.9814,892
435=4=2=23=3=2=57.1956.0436.7713,177
444=5=2=24=3=3=37.5439.7252.7412,027
456=3=2=22=3=3=520.2519.6960.0612,762
466=3=2=22=3=5=320.0620.2459.6912,739
475=3=3=23=2=5=310.7632.9256.3211,009
485=4=2=24=4=3=22.2959.5738.1410,343
495=4=2=24=4=2=32.7559.2937.9510,418
505=4=2=23=4=3=39.6537.3253.049505
514=4=3=24=4=3=29.8544.5245.648572
526=3=2=23=4=4=28.5351.6639.8110,166
535=4=2=24=2=5=21.2970.7527.969850
545=4=2=24=2=2=51.1469.8329.039803
556=3=2=23=4=2=48.5150.6740.829945
564=3=3=34=3=3=347.350.8851.779121
576=3=2=23=2=5=35.6238.6655.7210,001
586=3=2=23=2=3=55.7538.1356.1210,045
596=3=2=22=2=5=416.5122.3861.109847
606=3=2=22=2=4=516.3821.7061.929845
615=3=3=24=5=2=22.2467.1130.658073
625=3=3=24=2=5=21.8166.5331.668074
635=3=3=23=3=5=27.7351.9740.308476
644=5=2=24=3=2=43.1459.4437.417286
654=5=2=24=3=4=23.0759.9436.997227
666=3=2=23=3=2=57.8352.0240.147837
676=3=2=23=3=5=27.7652.2240.037840
685=4=2=23=4=2=43.6960.7035.607016
695=4=2=23=4=4=23.1861.2535.576798
706=3=2=22=4=2=59.3653.2537.396836
715=3=3=23=5=2=39.4734.4256.117083
726=3=2=22=4=5=28.2952.8238.896825
736=3=2=23=5=3=25.7157.7736.535782
746=3=2=23=5=2=35.6958.3036.005619
754=5=2=24=2=2=52.9670.1026.945669
764=5=2=24=2=5=23.0670.0626.895430
775=3=3=23=5=3=27.7353.8738.405292
786=3=2=22=5=3=39.0135.4755.524861
795=3=3=23=2=2=69.5637.0653.384822
805=4=2=23=2=2=64.7260.8634.423896
816=3=2=23=2=2=62.3059.9637.743132
826=3=2=23=2=6=22.8658.7838.363042
836=3=2=22=5=4=25.1157.5537.332933
846=3=2=22=5=2=46.0157.2336.752827
855=4=2=23=2=6=22.9763.7733.262730
866=3=2=22=2=3=612.1027.1560.752777
876=3=2=22=3=2=69.9549.6340.422291
885=4=2=24=5=2=20.0084.2715.731806
896=3=2=22=2=6=310.6031.8857.522067
906=3=2=22=3=6=29.5452.4438.021636
916=3=2=23=6=2=21.2572.5326.22801
Average for 91 Cases14.3131.3654.3315,453
Total Times201,292440,934764,0361,406,262

Study 8J05 MainTop Notrump or Suit Fit?

One Notrump or Two of Suit

If 1 NT or 2 S (but not 2 NT or 3 S) is makable, this table shows the percent of the time that only 1 NT makes, only 2 S makes, and both contracts make for each pair of hand patterns; i.e., percents in each row must total 100. Times shows the number of occasions the paired hand patterns qualified for this table.

The dominant message here is that at low levels the suit fit is always better, except with mirror 4-3-3-3 patterns (Case 56). Obviously this is because fewer high cards make notrump more demanding (stoppers, timing, etc.) while a trump fit has the same ruffing ability at any level.

CaseWestEast1 NT only2 S onlyBoth makeTimes
14=4=3=24=3=3=316.0644.1639.7879,803
24=4=3=24=2=3=49.9152.3437.7535,538
35=3=3=23=3=3=426.9327.7245.3432,760
44=4=3=24=2=4=37.8765.2226.9231,513
54=4=3=24=3=2=47.8165.2426.9531,270
65=3=3=23=4=3=319.5442.9437.5230,302
75=3=3=23=3=4=319.4143.2137.3830,490
85=4=2=23=3=3=410.4958.8530.6525,129
95=4=2=23=3=4=310.3059.1630.5525,007
105=3=3=23=2=4=410.9157.0132.0723,712
115=3=3=23=4=2=410.7456.0133.2523,778
125=3=3=24=3=3=316.5745.7937.6524,037
135=4=2=23=2=4=49.6153.6336.7620,824
144=4=3=24=3=4=25.0370.9024.0724,953
155=3=3=24=2=3=42.7072.0625.2420,938
164=5=2=24=2=3=44.2076.5519.2519,059
175=3=3=24=3=2=42.6170.9726.4321,066
184=5=2=24=2=4=34.1376.4019.4718,983
195=3=3=23=2=3=511.1053.7635.1418,778
205=3=3=23=3=2=510.5253.7335.7518,703
215=3=3=24=4=2=32.7477.8319.4317,957
225=3=3=24=2=4=32.8677.8219.3217,641
235=4=2=24=3=3=32.9175.7621.3317,650
245=4=2=24=2=3=40.9488.3210.7415,505
255=4=2=24=2=4=31.0188.0110.9715,273
265=3=3=23=4=4=26.9572.5420.5119,069
275=4=2=23=2=5=36.2767.2426.5014,299
285=4=2=23=2=3=56.3566.3027.3514,535
296=3=2=22=3=4=414.0352.2233.7614,160
306=3=2=23=3=3=49.4159.1031.4912,937
316=3=2=23=3=4=39.5559.1231.3312,944
325=3=3=24=3=4=26.0474.0219.9414,957
335=3=3=24=4=3=26.0473.1520.8115,057
346=3=2=22=4=4=310.6364.6824.6912,545
356=3=2=22=4=3=411.3864.1424.4812,476
365=3=3=24=2=2=50.6091.647.7610,731
376=3=2=23=4=3=38.4468.7622.8011,206
385=4=2=24=3=2=40.7387.2312.0412,195
395=4=2=24=3=4=20.8186.5212.6712,043
404=4=3=24=4=2=33.2677.0419.7012,406
415=4=2=23=3=5=23.3480.9515.7112,235
426=3=2=23=2=4=42.7076.6420.679750
435=4=2=23=3=2=53.4980.8615.6512,139
444=5=2=24=3=3=33.4075.0721.539531
456=3=2=22=3=3=510.5959.7729.639968
466=3=2=22=3=5=310.3860.3929.249706
475=3=3=23=2=5=33.6769.8926.458700
485=4=2=24=4=3=21.1487.9710.898663
495=4=2=24=4=2=31.5988.0910.318667
505=4=2=23=4=3=33.2476.3520.429086
514=4=3=24=4=3=23.9271.3724.7110,821
526=3=2=23=4=4=24.4380.9114.677705
535=4=2=24=2=5=20.1996.413.407332
545=4=2=24=2=2=50.2196.852.947268
556=3=2=23=4=2=44.5980.1515.267576
564=3=3=34=3=3=356.904.1938.918633
576=3=2=23=2=5=31.8582.4715.686959
586=3=2=23=2=3=52.0582.7915.156910
596=3=2=22=2=5=48.7762.2928.947443
606=3=2=22=2=4=58.5062.9528.557237
615=3=3=24=5=2=20.5989.2610.157161
625=3=3=24=2=5=20.6589.949.427285
635=3=3=23=3=5=25.8673.3420.807970
644=5=2=24=3=2=41.1789.299.546575
654=5=2=24=3=4=21.0089.069.946511
666=3=2=23=3=2=53.8378.7917.386168
676=3=2=23=3=5=23.5578.7017.755995
685=4=2=23=4=2=41.0288.8310.156382
695=4=2=23=4=4=21.1390.038.846179
706=3=2=22=4=2=54.4681.3514.186098
715=3=3=23=5=2=33.2572.4024.355782
726=3=2=22=4=5=24.5681.3414.096068
736=3=2=23=5=3=22.7084.5512.754596
746=3=2=23=5=2=32.5884.4213.004763
754=5=2=24=2=2=51.0891.966.964712
764=5=2=24=2=5=20.9991.977.044770
775=3=3=23=5=3=25.7174.4419.855184
786=3=2=22=5=3=34.2477.4018.364031
795=3=3=23=2=2=64.2069.9625.843189
805=4=2=23=2=2=61.8985.7112.402968
816=3=2=23=2=2=60.4691.338.212387
826=3=2=23=2=6=20.6991.797.522326
836=3=2=22=5=4=22.0786.0511.882517
846=3=2=22=5=2=42.8084.7412.472503
855=4=2=23=2=6=21.7487.3710.892066
866=3=2=22=2=3=64.5071.2124.302202
876=3=2=22=3=2=63.6277.8318.552043
885=4=2=24=5=2=20.1395.324.551581
896=3=2=22=2=6=35.1572.2622.581572
906=3=2=22=3=6=23.6878.4217.901469
916=3=2=23=6=2=20.0094.925.08650
Average for 91 Cases8.4465.7225.8412,662
Total Times97,271757,267297,7231,152,261

Study 8J05 MainTop Notrump or Suit Fit?

Two Notrump or Three of Suit

If 2 NT or 3 S (but not 3 NT or 4 S) is makable, this table shows the percent of the time that only 2 NT makes, only 3 S makes, and both contracts make for each pair of hand patterns; i.e., percents in each row must total 100. Times shows the number of occasions the paired hand patterns qualified for this table. Tinted rows show cases where 2 NT makes more often than 3 S.

As one might expect, this data falls between the previous two tables. Like 3 NT, the notorious 4-3-3-3 shape suggests ignoring the suit fit to play 2 NT, but to a lesser degree. Note the flip-flop in Case 1 and the resounding return to normalcy in Cases 29 and 45.

CaseWestEast2 NT only3 S onlyBoth makeTimes
14=4=3=24=3=3=326.8729.4843.6566,624
24=4=3=24=2=3=417.0536.3846.5731,626
35=3=3=23=3=3=443.4213.1543.4328,221
44=4=3=24=2=4=313.1254.0832.8028,858
54=4=3=24=3=2=413.5053.5932.9128,672
65=3=3=23=4=3=333.2529.0637.6925,217
75=3=3=23=3=4=332.5829.2238.2025,288
85=4=2=23=3=3=417.5645.7236.7222,294
95=4=2=23=3=4=317.1445.8337.0322,374
105=3=3=23=2=4=417.9245.5036.5821,449
115=3=3=23=4=2=418.2244.5737.2221,330
125=3=3=24=3=3=329.5828.5341.8920,380
135=4=2=23=2=4=414.9042.9842.1219,898
144=4=3=24=3=4=27.3667.4925.1519,248
155=3=3=24=2=3=45.7255.2838.9917,904
164=5=2=24=2=3=47.4468.0024.5619,066
175=3=3=24=3=2=45.7255.4438.8417,944
184=5=2=24=2=4=36.8068.5224.6818,785
195=3=3=23=2=3=518.7541.1640.0915,777
205=3=3=23=3=2=518.8539.6441.5015,816
215=3=3=24=4=2=35.2767.5127.2217,150
225=3=3=24=2=4=35.0567.4127.5517,006
235=4=2=24=3=3=35.4164.8329.7616,882
245=4=2=24=2=3=41.7382.2216.0616,576
255=4=2=24=2=4=31.8381.7816.3916,539
265=3=3=23=4=4=211.0366.3522.6214,394
275=4=2=23=2=5=310.3357.6831.9914,068
285=4=2=23=2=3=510.4956.6132.9113,873
296=3=2=22=3=4=423.7939.5236.6911,998
306=3=2=23=3=3=417.6450.7831.5811,412
316=3=2=23=3=4=316.7751.4931.7411,262
325=3=3=24=3=4=212.2763.4124.3211,978
335=3=3=24=4=3=212.4362.9324.6512,079
346=3=2=22=4=4=316.8655.0528.0910,979
356=3=2=22=4=3=417.4854.7927.7410,729
365=3=3=24=2=2=51.2087.3811.4212,025
376=3=2=23=4=3=311.7664.8623.3910,690
385=4=2=24=3=2=41.3780.8117.8211,442
395=4=2=24=3=4=21.6180.5217.8711,553
404=4=3=24=4=2=36.3468.1725.4911,348
415=4=2=23=3=5=25.4375.5219.0510,319
426=3=2=23=2=4=44.2469.5626.2010,746
435=4=2=23=3=2=55.4674.7419.8010,372
444=5=2=24=3=3=36.0569.9024.049370
456=3=2=22=3=3=519.5847.9232.508078
466=3=2=22=3=5=320.1247.7832.108353
475=3=3=23=2=5=38.0760.7231.218101
485=4=2=24=4=3=21.7383.6614.619126
495=4=2=24=4=2=32.1883.1414.679070
505=4=2=23=4=3=36.0867.1126.818990
514=4=3=24=4=3=25.6864.7129.618506
526=3=2=23=4=4=27.5075.5716.947498
535=4=2=24=2=5=20.6595.084.268115
545=4=2=24=2=2=50.5595.603.848145
556=3=2=23=4=2=47.3175.6217.087431
564=3=3=34=3=3=369.731.9328.348716
576=3=2=23=2=5=33.2375.5021.277626
586=3=2=23=2=3=52.6376.3421.037485
596=3=2=22=2=5=415.1951.8332.986464
606=3=2=22=2=4=515.3852.6232.006384
615=3=3=24=5=2=21.2784.5314.217419
625=3=3=24=2=5=21.2084.7614.047256
635=3=3=23=3=5=212.9062.2724.835884
644=5=2=24=3=2=42.1684.4713.376297
654=5=2=24=3=4=21.8885.4812.646431
666=3=2=23=3=2=59.6071.6318.775252
676=3=2=23=3=5=210.0070.5219.485349
685=4=2=23=4=2=42.0183.4014.596066
695=4=2=23=4=4=21.9383.5414.536015
706=3=2=22=4=2=57.7675.1417.105427
715=3=3=23=5=2=36.9263.6729.425364
726=3=2=22=4=5=28.6374.0117.365086
736=3=2=23=5=3=24.5180.0215.474830
746=3=2=23=5=2=34.1578.5817.274766
754=5=2=24=2=2=51.7589.099.164848
764=5=2=24=2=5=21.7789.149.094642
775=3=3=23=5=3=211.0264.8624.123848
786=3=2=22=5=3=37.7769.1523.083592
795=3=3=23=2=2=67.0667.5125.433398
805=4=2=23=2=2=63.2281.9614.833109
816=3=2=23=2=2=61.5184.2614.242585
826=3=2=23=2=6=21.2283.1615.622797
836=3=2=22=5=4=24.9079.1615.942246
846=3=2=22=5=2=45.4178.7015.892310
855=4=2=23=2=6=22.3283.5114.172195
866=3=2=22=2=3=611.1259.4429.431906
876=3=2=22=3=2=612.3168.8618.831641
885=4=2=24=5=2=20.1695.534.311835
896=3=2=22=2=6=37.8563.9628.191440
906=3=2=22=3=6=210.1673.1216.721250
916=3=2=23=6=2=21.1184.8114.07810
Average for 91 Cases13.7356.6429.6211,489
Total Times143,571592,240309,7321,045,543

Study 8J05 MainTop Notrump or Suit Fit?

Six Notrump or Six of Suit

If 6 NT or 6 S is makable, this table shows the percent of the time that only 6 NT makes, only 6 S makes, and both slams make for each pair of hand patterns; i.e., percents in each row must total 100. Times shows the number of occasions the paired hand patterns qualified for this table.

This comparison differs from the previous ones in that both contracts are at the same level, which is dictated to have practical benefit — at least I could see no reason to compare 6 NT with a seven-bid. Therefore, it is obvious that suit contracts have a definite edge in producing an equal number of tricks. In most cases the advantage is big, but it narrows considerably when a 4-3-3-3 pattern is involved.

This should make you think twice about shunning a suit fit to play 6 NT, though in the case of a minor the frequent 2-IMP gain for 6 NT will often override. For example, consider Case 3 with a minor fit, vulnerable. In 100 tries 6 NT gains 5×16 - 8×16 + 87×2 = 126 IMPs!

Note the Times column in Cases 51 and 56, which are extremely low and disproportionate, despite the fact that cases are listed in order of frequency of the paired patterns. Why so? Because mirror shapes seldom win 12 tricks in any strain. A word to the wise.

CaseWestEast6 NT only6 S onlyBoth makeTimes
14=4=3=24=3=3=34.8332.6262.558382
24=4=3=24=2=3=43.3555.3741.285315
35=3=3=23=3=3=44.888.0087.124751
44=4=3=24=2=4=34.7046.7148.584761
54=4=3=24=3=2=44.9447.0548.014793
65=3=3=23=4=3=35.807.5586.644979
75=3=3=23=3=4=36.017.4486.554908
85=4=2=23=3=3=45.5515.8978.564287
95=4=2=23=3=4=36.1915.5378.284442
105=3=3=23=2=4=45.8221.0873.104621
115=3=3=23=4=2=46.1719.8074.024600
125=3=3=24=3=3=32.165.0792.782270
135=4=2=23=2=4=43.9333.4262.654530
144=4=3=24=3=4=26.9927.9165.102791
155=3=3=24=2=3=41.3738.3260.313502
164=5=2=24=2=3=44.4750.9644.574431
175=3=3=24=3=2=41.3239.3359.353397
184=5=2=24=2=4=35.0351.4043.574496
195=3=3=23=2=3=56.7328.3264.954385
205=3=3=23=3=2=56.4728.0365.504417
215=3=3=24=4=2=31.8731.5966.543314
225=3=3=24=2=4=31.8331.6566.523226
235=4=2=24=3=3=32.3023.2074.512832
245=4=2=24=2=3=40.8354.3944.783743
255=4=2=24=2=4=31.0653.2645.683774
265=3=3=23=4=4=26.3212.4081.283040
275=4=2=23=2=5=36.4830.8162.703609
285=4=2=23=2=3=56.3430.6663.003738
296=3=2=22=3=4=44.9116.3378.753276
306=3=2=23=3=3=42.6914.7282.593010
316=3=2=23=3=4=32.4414.5682.992946
325=3=3=24=3=4=22.5513.1584.301962
335=3=3=24=4=3=22.5213.0684.412021
346=3=2=22=4=4=35.5316.7477.733040
356=3=2=22=4=3=45.1417.6777.193056
365=3=3=24=2=2=51.1653.2545.593354
376=3=2=23=4=3=32.3615.7681.883096
385=4=2=24=3=2=41.4236.7461.832316
395=4=2=24=3=4=22.3435.5062.162265
404=4=3=24=4=2=30.9541.5957.461368
415=4=2=23=3=5=28.4722.8768.652667
426=3=2=23=2=4=41.9926.9971.012860
435=4=2=23=3=2=58.0524.6667.302486
444=5=2=24=3=3=31.0945.3053.612746
456=3=2=22=3=3=57.4618.0074.542533
466=3=2=22=3=5=37.0516.6976.262511
475=3=3=23=2=5=32.2219.2878.512345
485=4=2=24=4=3=22.2610.0187.731239
495=4=2=24=4=2=32.1510.6687.191210
505=4=2=23=4=3=33.2013.8083.011377
514=4=3=24=4=3=21.498.9389.58672
526=3=2=23=4=4=22.9519.4077.651964
535=4=2=24=2=5=21.3350.0548.622030
545=4=2=24=2=2=51.8449.0849.082007
556=3=2=23=4=2=43.1317.5479.331984
564=3=3=34=3=3=35.119.0985.80352
576=3=2=23=2=5=32.1029.1168.792233
586=3=2=23=2=3=52.0529.5868.372248
596=3=2=22=2=5=46.8820.8372.302108
606=3=2=22=2=4=57.7719.8672.372150
615=3=3=24=5=2=22.7625.6971.551849
625=3=3=24=2=5=23.1227.4669.411857
635=3=3=23=3=5=22.1316.1181.761831
644=5=2=24=3=2=41.2041.3357.471500
654=5=2=24=3=4=22.2442.0155.751426
666=3=2=23=3=2=52.6025.1772.231768
676=3=2=23=3=5=23.1026.4570.451709
685=4=2=23=4=2=43.2415.5581.21958
695=4=2=23=4=4=21.5418.7979.67974
706=3=2=22=4=2=510.1015.8274.081555
715=3=3=23=5=2=31.6925.0073.311360
726=3=2=22=4=5=28.0218.9773.011571
736=3=2=23=5=3=24.107.5388.371341
746=3=2=23=5=2=33.477.5888.951385
754=5=2=24=2=2=57.6644.1148.221070
764=5=2=24=2=5=27.9644.0148.04993
775=3=3=23=5=3=21.8318.7579.421040
786=3=2=22=5=3=33.0910.1186.801068
795=3=3=23=2=2=61.9031.5766.521156
805=4=2=23=2=2=62.5528.5168.94982
816=3=2=23=2=2=63.6723.1173.23818
826=3=2=23=2=6=21.8924.4373.68741
836=3=2=22=5=4=24.0211.1084.88721
846=3=2=22=5=2=43.1011.5085.40678
855=4=2=23=2=6=22.3236.0161.67647
866=3=2=22=2=3=62.9915.5781.44668
876=3=2=22=3=2=62.5215.3282.16555
885=4=2=24=5=2=20.8519.7279.44355
896=3=2=22=2=6=33.9621.6774.38480
906=3=2=22=3=6=23.9119.2776.82358
916=3=2=23=6=2=20.002.9797.03202
Average for 91 Cases4.1227.6368.262444
Total Times915461,436151,792222,382

Study 8J05 MainTop Notrump or Suit Fit?

© 2014 Richard Pavlicek