Would you trade your wallet for whats behind Door Number 2? I didnt think so, but you might be interested in the makeup of a bridge deal. For example, what are the chances of all four hands being balanced? Or a deal having a void suit? Or a seven-card suit? Or various other items of interest or noninterest for that matter. Check out the following tables for answers.
The number of possible bridge deals is mind-boggling: 53,644,737,765,488,792,839,237,440,000. Thats 29 digits or 53+ octillion. Nobody ever listed or counted each individual deal such a feat would be impossible even by the most powerful computers but the number is easily calculated.*
Each table lists a description of various deal types, the number of generic dealprints*, the number of actual deals, the approximate odds against such a deal type, and the percent probability rounded to four decimal places. (In the few cases where the odds are in favor of the deal, it is indicated simply as favored.)
*The shape of all four hands. There are 37,478,624 specific dealprints; but all my references are to generic dealprints, which reduce the number to 393,197. Each generic dealprint contains 96, 48, 24 or 16 specific dealprints. See my article Dealprints and Matrices for an explanation.
This table lists deal types based on general characteristics. Some terms may need clarification: Balanced includes generic hand patterns 4-3-3-3, 4-4-3-2 and 5-3-3-2; semibalanced includes 5-4-2-2 and 6-3-2-2; quasibalanced includes 4-4-4-1 and 5-4-3-1. Symmetrical means that a like rotation of each specific hand pattern produces the next hand pattern.
The following 14 tables show the chances of each specific suit length from a void through 13 cards. Each table caption shows the average number per deal, and the table lists a variety of pertinent holdings. The shorthand 1+ voids means at least 1 void. Ostensibly missing entries (e.g., 11 voids) are impossible.
Voids 0.2047
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No void | 24,547 | 43786641333457372963248979200 F | 81.6234
|
1 void | 75,390 | 8799457894227700441632304128 5:1 | 16.4032
|
1+ voids | 368,650 | 9858096432031419875988460800 9:2 | 18.3766
|
2 voids | 113,242 | 998506861918196340608870400 52:1 | 1.8613
|
2+ voids | 293,260 | 1058638537803719434356156672 49:1 | 1.9734
|
3 voids | 97,346 | 58348592829119872339137792 918:1 | 0.1088
|
3+ voids | 180,018 | 60131675885523093747286272 891:1 | 0.1121
|
4 voids | 55,936 | 1760151254006403709124544 30476:1 | 0.0033
|
4+ voids | 82,672 | 1783083056403221408148480 30084:1 | 0.0033
|
5 voids | 20,178 | 22741159103390139399936 2358926:1 | 0.0000
|
5+ voids | 26,736 | 22931802396817699023936 2339315:1 | 0.0000
|
6 voids | 5483 | 189905533721240847744 282481171:1 | 0.0000
|
6+ voids | 6558 | 190643293427559624000 281388013:1 | 0.0000
|
7 voids | 792 | 733838125172226048 73101595467:1 | 0.0000
|
7+ voids | 1075 | 737759706318776256 72713022011:1 | 0.0000
|
8 voids | 258 | 3920126156514360 13684441679597:1 | 0.0000
|
8+ voids | 283 | 3921581146550208 13679364460601:1 | 0.0000
|
9 voids | 12 | 1454241192768 36888473543636524:1 | 0.0000
|
9+ voids | 25 | 1454990035848 36869488067815849:1 | 0.0000
|
10 voids | 12 | 748843056 71636823411351487298:1 | 0.0000
|
10+ voids | 13 | 748843080 71636821115431543866:1 | 0.0000
|
12 voids | 1 | 24 2235197406895366368301559999:1 | 0.0000
|
Shortest suit 0 | 368,650 | 9858096432031419875988460800 9:2 | 18.3766 |
Singletons 1.2810
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No singleton | 23,919 | 13436267408464750462079611896 3:1 | 25.0468
|
1 singleton | 74,087 | 19692753394437851528571129216 5:3 | 36.7096
|
1+ singletons | 369,278 | 40208470357024042377157828104 F | 74.9532
|
2 singletons | 115,171 | 13982420636500124063619552240 3:1 | 26.0649
|
2+ singletons | 295,191 | 20515716962586190848586698888 8:5 | 38.2437
|
3 singletons | 96,244 | 5234722137247397227258877376 9:1 | 9.7581
|
3+ singletons | 180,020 | 6533296326086066784967146648 7:1 | 12.1788
|
4 singletons | 55,300 | 1148260368984438039385190616 45:1 | 2.1405
|
4+ singletons | 83,776 | 1298574188838669557708269272 40:1 | 2.4207
|
5 singletons | 20,868 | 138766430185365695589766656 385:1 | 0.2587
|
5+ singletons | 28,476 | 150313819854231518323078656 355:1 | 0.2802
|
6 singletons | 6271 | 11122755677912332785217536 4821:1 | 0.0207
|
6+ singletons | 7608 | 11547389668865822733312000 4644:1 | 0.0215
|
7 singletons | 1036 | 408790415278227335528448 131226:1 | 0.0008
|
7+ singletons | 1337 | 424633990953489948094464 126330:1 | 0.0008
|
8 singletons | 268 | 15665802824130246567936 3424320:1 | 0.0000
|
8+ singletons | 301 | 15843575675262612566016 3385897:1 | 0.0000
|
9 singletons | 22 | 174134142810284507136 308065590:1 | 0.0000
|
9+ singletons | 33 | 177772851132365998080 301760011:1 | 0.0000
|
10 singletons | 10 | 3638500218106490880 14743640111:1 | 0.0000
|
10+ singletons | 11 | 3638708322081490944 14742796897:1 | 0.0000
|
12 singletons | 1 | 208103975000064 257778534818818:1 | 0.0000
|
Shortest suit 1 | 24,086 | 32720775036312562688742739200 F | 60.9953 |
Doubletons 3.2940
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No doubleton | 30,734 | 804259249659202740664528512 65:1 | 1.4992
|
1 doubleton | 81,195 | 4243260184157275735384000512 11:1 | 7.9099
|
1+ doubletons | 362,463 | 52840478515829590098572911488 F | 98.5008
|
2 doubletons | 113,339 | 10928139270707171912961848832 4:1 | 20.3713
|
2+ doubletons | 281,268 | 48597218331672314363188910976 F | 90.5908
|
3 doubletons | 89,709 | 14440004290394498870749274112 8:3 | 26.9178
|
3+ doubletons | 167,929 | 37669079060965142450227062144 F | 70.2195
|
4 doubletons | 50,662 | 13058442226453447625951590272 3:1 | 24.3424
|
4+ doubletons | 78,220 | 23229074770570643579477788032 4:3 | 43.3017
|
5 doubletons | 19,662 | 6697224638661855788498511360 7:1 | 12.4844
|
5+ doubletons | 27,558 | 10170632544117195953526197760 4:1 | 18.9592
|
6 doubletons | 6348 | 2855610546731060215809254400 17:1 | 5.3232
|
6+ doubletons | 7896 | 3473407905455340165027686400 14:1 | 6.4748
|
7 doubletons | 1263 | 520926012825773891491584000 101:1 | 0.9711
|
7+ doubletons | 1548 | 617797358724279949218432000 85:1 | 1.1516
|
8 doubletons | 244 | 88573369500118130779008000 604:1 | 0.1651
|
8+ doubletons | 285 | 96871345898506057726848000 552:1 | 0.1806
|
9 doubletons | 32 | 6829571339090287856640000 7853:1 | 0.0127
|
9+ doubletons | 41 | 8297976398387926947840000 6463:1 | 0.0155
|
10 doubletons | 8 | 1454751357497884892160000 36874:1 | 0.0027
|
10+ doubletons | 9 | 1468405059297639091200000 36531:1 | 0.0027
|
12 doubletons | 1 | 13653701799754199040000 3928950:1 | 0.0000
|
Shortest suit 2 | 460 | 11015900532747294908106240000 4:1 | 20.5349 |
Tripletons 4.5813
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No tripleton | 42,267 | 298481305036862547953966208 178:1 | 0.5564
|
1 tripleton | 94,020 | 1641241485067199149856037888 31:1 | 3.0595
|
1+ tripletons | 350,930 | 53346256460451930291283473792 F | 99.4436
|
2 tripletons | 112,960 | 5355205218885833912073927168 9:1 | 9.9827
|
2+ tripletons | 256,910 | 51705014975384731141427435904 F | 96.3841
|
3 tripletons | 79,273 | 8872474055429629157573119488 5:1 | 16.5393
|
3+ tripletons | 143,950 | 46349809756498897229353508736 F | 86.4014
|
4 tripletons | 41,824 | 11257865437176662107015225728 4:1 | 20.9860
|
4+ tripletons | 64,677 | 37477335701069268071780389248 F | 69.8621
|
5 tripletons | 16,092 | 9975568326621327582382264320 4:1 | 18.5956
|
5+ tripletons | 22,853 | 26219470263892605964765163520 1:1 | 48.8761
|
6 tripletons | 5205 | 7474355676760133808619315200 6:1 | 13.9331
|
6+ tripletons | 6761 | 16243901937271278382382899200 7:3 | 30.2805
|
7 tripletons | 1248 | 5087619301709484239192064000 9:1 | 9.4839
|
7+ tripletons | 1556 | 8769546260511144573763584000 5:1 | 16.3474
|
8 tripletons | 258 | 2208867758155132312043520000 23:1 | 4.1176
|
8+ tripletons | 308 | 3681926958801660334571520000 13:1 | 6.8635
|
9 tripletons | 40 | 1078084931631556552704000000 48:1 | 2.0097
|
9+ tripletons | 50 | 1473059200646528022528000000 35:1 | 2.7460
|
10 tripletons | 9 | 345008504617456103424000000 154:1 | 0.6431
|
10+ tripletons | 10 | 394974269014971469824000000 134:1 | 0.7363
|
12 tripletons | 1 | 49965764397515366400000000 1072:1 | 0.0931
|
Shortest suit 3 | 1 | 49965764397515366400000000 1072:1 | 0.0931 |
4-Card Suits 3.8177
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No 4-card suit | 58,548 | 827527196765622468298731000 63:1 | 1.5426
|
1 4-card suit | 112,213 | 3264522488820600040694232000 15:1 | 6.0854
|
1+ 4-card suits | 334,649 | 52817210568723170370938709000 F | 98.4574
|
2 4-card suits | 110,589 | 8107219615979748529508958000 11:2 | 15.1128
|
2+ 4-card suits | 222,436 | 49552688079902570330244477000 F | 92.3719
|
3 4-card suits | 65,716 | 11328128521386758622862464000 4:1 | 21.1169
|
3+ 4-card suits | 111,847 | 41445468463922821800735519000 F | 77.2592
|
4 4-card suits | 31,088 | 12122462049388925454412335000 7:2 | 22.5977
|
4+ 4-card suits | 46,131 | 30117339942536063177873055000 F | 56.1422
|
5 4-card suits | 10,584 | 9405039628729954030309488000 9:2 | 17.5321
|
5+ 4-card suits | 15,043 | 17994877893147137723460720000 2:1 | 33.5445
|
6 4-card suits | 3402 | 5219103350668664679414192000 9:1 | 9.7290
|
6+ 4-card suits | 4459 | 8589838264417183693151232000 5:1 | 16.0125
|
7 4-card suits | 839 | 2635160299611246929602080000 19:1 | 4.9122
|
7+ 4-card suits | 1057 | 3370734913748519013737040000 14:1 | 6.2834
|
8 4-card suits | 181 | 585877783479958092483360000 90:1 | 1.0921
|
8+ 4-card suits | 218 | 735574614137272084134960000 71:1 | 1.3712
|
9 4-card suits | 29 | 124079826585336167145600000 431:1 | 0.2313
|
9+ 4-card suits | 37 | 149696830657313991651600000 357:1 | 0.2791
|
10 4-card suits | 7 | 24628911563140240356000000 2177:1 | 0.0459
|
10+ 4-card suits | 8 | 25617004071977824506000000 2093:1 | 0.0478
|
12 4-card suits | 1 | 988092508837584150000000 54290:1 | 0.0018
|
Longest suit 4 | 29 | 1571494042604960223750000000 33:1 | 2.9294
|
Longest 4 shortest 1 | 9 | 226907515517134602150000000 235:1 | 0.4230
|
Longest 4 shortest 2 | 19 | 1294620762690310255200000000 40:1 | 2.4133
|
Longest 4 shortest 3 | 1 | 49965764397515366400000000 1072:1 | 0.0931 |
5-Card Suits 1.9951
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No 5-card suit | 87,006 | 4597881752913411186598943736 10:1 | 8.5710
|
1 5-card suit | 121,143 | 14162753528304985663093951488 3:1 | 26.4010
|
1+ 5-card suits | 306,191 | 49046856012575381652638496264 F | 91.4290
|
2 5-card suits | 104,508 | 18067215541367691851979855600 2:1 | 33.6794
|
2+ 5-card suits | 185,048 | 34884102484270395989544544776 F | 65.0280
|
3 5-card suits | 54,798 | 11640282689397513831787179072 7:2 | 21.6988
|
3+ 5-card suits | 80,540 | 16816886942902704137564689176 9:4 | 31.3486
|
4 5-card suits | 20,055 | 4206420083748200765168830680 11:1 | 7.8413
|
4+ 5-card suits | 25,742 | 5176604253505190305777510104 9:1 | 9.6498
|
5 5-card suits | 4722 | 847666043311209636417007104 62:1 | 1.5801
|
5+ 5-card suits | 5687 | 970184169756989540608679424 54:1 | 1.8085
|
6 5-card suits | 878 | 115132376736925239588728832 464:1 | 0.2146
|
6+ 5-card suits | 965 | 122518126445779904191672320 436:1 | 0.2284
|
7 5-card suits | 75 | 6872885114033959677296640 7804:1 | 0.0128
|
7+ 5-card suits | 87 | 7385749708854664602943488 7262:1 | 0.0138
|
8 5-card suits | 12 | 512864594820704925646848 104597:1 | 0.0010
|
Longest suit 5 | 3297 | 21583251210971361009130800768 3:2 | 40.2337
|
Longest 5 shortest 0 | 1588 | 1609503787729626328278490752 32:1 | 3.0003
|
Longest 5 shortest 1 | 1491 | 12670231342665127083546710016 3:1 | 23.6188
|
Longest 5 shortest 2 | 218 | 7303516080576607597305600000 6:1 | 13.6146 |
6-Card Suits 0.6650
Deal Contains | Dealprints | Number of Deals Odds Against | Percent
|
---|
No 6-card suit | 113,853 | 26905653785695390696041730560 F | 50.1553
|
1 6-card suit | 144,621 | 19066726906544846134962690048 7:4 | 35.5426
|
1+ 6-card suits | 279,344 | 26739083979793402143195709440 1:1 | 49.8447
|
2 6-card suits | 93,353 | 6485428597816725021394136064 7:1 | 12.0896
|
2+ 6-card suits | 134,723 | 7672357073248556008233019392 6:1 | 14.3022
|
3 6-card suits | 32,684 | 1111477008094705239177535488 47:1 | 2.0719
|
3+ 6-card suits | 41,370 | 1186928475431830986838883328 44:1 | 2.2126
|
4 6-card suits | 7423 | 74270503985138725291822080 721:1 | 0.1384
|
4+ 6-card suits | 8686 | 75451467337125747661347840 709:1 | 0.1407
|
5 6-card suits | 1092 | 1166137252500210225371136 46001:1 | 0.0022
|
5+ 6-card suits | 1263 | 1180963351987022369525760 45423:1 | 0.0022
|
6 6-card suits | 154 | 14747938755361745117184 3637438:1 | 0.0000
|
6+ 6-card suits | 171 | 14826099486812144154624 3618262:1 | 0.0000
|
7 6-card suits | 12 | 73663812654622654464 728237322:1 | 0.0000
|
7+ 6-card suits | 17 | 78160731450399037440 686338736:1 | 0.0000
|
8 6-card suits | 5 | 4496918795776382976 11929220917:1 | 0.0000
|
Longest suit 6 | 32,873 | 22642122348654241172787919872 4:3 | 42.2075
|
Longest 6 shortest 0 | 25,611 | 5023219452210248132366595072 9:1 | 9.3639
|
Longest 6 shortest 1 | 7077 | 15313265176067504842881484800 5:2 | 28.5457
|
Longest 6 shortest 2 | 185 | 2305637720376488197539840000 22:1 | 4.2980 |
The flattest deal (each hand 4-3-3-3) has a freakness of zero, and the wildest deal (each hand 13-0-0-0) has a freakness of 80. All others fall in between, with the great majority on the low end. The average deal freakness is 11.9314. See Patterns and Freakness for an explanation. The following table shows a breakdown of deals by freakness (missing freakness numbers are impossible).
Freakness | Dealprints | Number of Deals Odds Against | Percent
|
---|
0 | 1 | 49965764397515366400000000 1072:1 | 0.0931
|
1 | 3 | 224845939788819148800000000 237:1 | 0.4191
|
2 | 4 | 337268909683228723200000000 158:1 | 0.6287
|
3 | 17 | 1277249852411486553600000000 41:1 | 2.3809
|
4 | 19 | 1059656755610994244704000000 49:1 | 1.9753
|
5 | 54 | 2182129845650489839104000000 23:1 | 4.0677
|
6 | 61 | 2100679403961990102451200000 24:1 | 3.9159
|
7 | 144 | 3900852209396223412531200000 12:1 | 7.2716
|
8 | 169 | 2935429792437846953208960000 17:1 | 5.4720
|
9 | 277 | 3902968973315092438517760000 12:1 | 7.2756
|
10 | 449 | 4319233756510792955996160000 11:1 | 8.0516
|
11 | 592 | 4177391033763705615137280000 11:1 | 7.7871
|
12 | 853 | 3990368759941243838222064000 12:1 | 7.4385
|
13 | 1206 | 3836417947826698802760192000 12:1 | 7.1515
|
14 | 1601 | 3648437681407219980639360000 13:1 | 6.8011
|
15 | 2226 | 3264937827762008134953216000 15:1 | 6.0862
|
16 | 2749 | 2663243649725330822345395200 19:1 | 4.9646
|
17 | 3543 | 2289468162846201949464652800 22:1 | 4.2678
|
18 | 4608 | 1932541204471813293546988800 26:1 | 3.6025
|
19 | 5391 | 1480279600703791494954547200 35:1 | 2.7594
|
20 | 6685 | 1174583424431230888775500800 44:1 | 2.1896
|
21 | 7689 | 856279205971843936824622080 61:1 | 1.5962
|
22 | 9282 | 651189608460944685643230720 81:1 | 1.2139
|
23 | 10,881 | 468514461078731756738649600 113:1 | 0.8734
|
24 | 11,530 | 309869707607739903405614976 172:1 | 0.5776
|
25 | 13,463 | 224014273521217767999290880 238:1 | 0.4176
|
26 | 14,828 | 146819296583833277172307968 364:1 | 0.2737
|
27 | 15,943 | 93044009812336198278474240 575:1 | 0.1734
|
28 | 17,246 | 60185626811626055142978432 890:1 | 0.1122
|
29 | 17,064 | 35602130280545690996040192 1505:1 | 0.0664
|
30 | 18,828 | 22690215766463274527427072 2363:1 | 0.0423
|
31 | 18,930 | 12814634946132905421279744 4185:1 | 0.0239
|
32 | 18,811 | 7271032073391375174407808 7376:1 | 0.0136
|
33 | 18,960 | 4027998015429852085509888 13316:1 | 0.0075
|
34 | 17,824 | 2134460884602256692932736 25131:1 | 0.0040
|
35 | 18,264 | 1204090604570608544934144 44551:1 | 0.0022
|
36 | 16,955 | 588171565475675378600832 91204:1 | 0.0011
|
37 | 15,676 | 281495292714510093483264 190569:1 | 0.0005
|
38 | 14,636 | 136548415355635932352704 392861:1 | 0.0003
|
39 | 12,796 | 66675424468034146976640 804564:1 | 0.0001
|
40 | 12,244 | 31568800006311999095808 1699295:1 | 0.0001
|
41 | 10,296 | 12551152845439469866176 4274087:1 | 0.0000
|
42 | 8794 | 5539188505944246918336 9684583:1 | 0.0000
|
43 | 7494 | 2281818876604493219136 23509637:1 | 0.0000
|
44 | 6608 | 1080773542988045704512 49635501:1 | 0.0000
|
45 | 5400 | 364042919909640464064 147358276:1 | 0.0000
|
46 | 4335 | 149341040837809172352 359209613:1 | 0.0000
|
47 | 3664 | 56213864818077979584 954297269:1 | 0.0000
|
48 | 2927 | 22667027728510788480 2366641907:1 | 0.0000
|
49 | 2405 | 7918128597821105664 6774926309:1 | 0.0000
|
50 | 1921 | 2786029111818995328 19254909266:1 | 0.0000
|
51 | 1545 | 1050155184192903360 51082676705:1 | 0.0000
|
52 | 1176 | 381937032300814848 140454402763:1 | 0.0000
|
53 | 914 | 123106992036215616 435757034414:1 | 0.0000
|
54 | 832 | 48759791163887232 1100183911476:1 | 0.0000
|
55 | 500 | 12332598988387392 4349832327799:1 | 0.0000
|
56 | 495 | 6378802488829056 8409844615729:1 | 0.0000
|
57 | 288 | 1201770056710080 44638104823765:1 | 0.0000
|
58 | 350 | 776728909674432 69064942861433:1 | 0.0000
|
59 | 126 | 101120237302656 530504468704205:1 | 0.0000
|
60 | 207 | 87806733670656 610941046579621:1 | 0.0000
|
61 | 56 | 7741853982720 6929184906512716:1 | 0.0000
|
62 | 142 | 9610252313376 5582032189812906:1 | 0.0000
|
63 | 21 | 384475703040 139526990499859266:1 | 0.0000
|
64 | 87 | 927265749696 57852603509917176:1 | 0.0000
|
65 | 6 | 13029299712 4117238758126189063:1 | 0.0000
|
66 | 48 | 77879337120 688818623132738764:1 | 0.0000
|
67 | 1 | 361924992 148220595292542806325:1 | 0.0000
|
68 | 30 | 5262221952 10194313021156427427:1 | 0.0000
|
70 | 12 | 288527616 185925834445908958811:1 | 0.0000
|
72 | 10 | 14638104 3664732657008639427566:1 | 0.0000
|
74 | 2 | 421824 127173270761001727827807:1 | 0.0000
|
76 | 2 | 24336 2204336693190696615682010:1 | 0.0000
|
80 | 1 | 24 2235197406895366368301559999:1 | 0.0000
|
Totals | 393,197 | 53,644,737,765,488,792,839,237,440,000 | 100 |